Automatic verification of
textbook programs that use

!'_ comprehensions.

Rosemary Monahan
National University of Ireland, Maynooth, Ireland

K. Rustan M. Leino,
Microsoft Research, Redmond, USA

31 July 2007 FTIP 2007

i Presentation Overview

= Supporting comprehensions in Spec#

s Encoding comprehensions as first-order
expressions
=« Comprehension Functions
« Matching Triggers
=« Axioms and their Adequacy

= Verification of examples from A Method of
Programming by Dijkstra and Feijen.

= Evaluation & Conclusions

i Spec# Programming System

= Mix of contracts and tool support

= Superset of C#
= non-null types, pre- and postconditions, object invariants

= (00l support
= more type checking
= compiler-emitted run-time checks
= static program verification
= sound modular verification

« focus on automation of verification rather than full
functional correctness of specifications

Spec# Verifier Architecture

S

* g

static verifier (Boogie)

W\ 1{4 -
With thanks to Microsoft Research COrreCt or IISt Of €rrors

Supporting Comprehensions in

!'_ the Spec# Language

Spec# Example

public static int SegSum(int[] a, int i, int j)

requires 0<=i && i <=j && j <= a.Length;
ensures result == sum{int k in (i:j); a[k]};

{ ints=0;
for (intn=1i; n<j; n++)

invariant i <=n && n <=j;
invariant s == sum{int k in (i:n); a[k]};

{ S += a[n];

}

return s;

i Comprehensions in Spec#

Q{KkinE F; T}

sum {int k in (i:n); a[k]};

product {int k in (1..n); k};

min {int k in (0:a.Length); a[k]};

sum {int k in (0:a.Length), i<=k && k <j ; a[k]};
count {int k in (0: n); ((a[k] % 2)== 0)};

max {int k in (0:a.Length), Even(a[k]); a[k]};

(or forall, exists or exists-unique but those forms
have counterparts in first-order logic)

i Boogie

The Spec# static program verifier

= Translates compiled Spec# programs into the
intermediate verification language BoogiePL
= Includes functions and axioms
= Its expressions include logical quantifiers and arithmetic

= Generates verification conditions for Satisfiability Modulo
Theories (SMT) solvers
= Maps core language into first-order formulae using wp calculus
= Does not supply direct support for comprehensions, so

the translation from Spec# to BoogiePL must use some
suitable encoding

Encoding Comprehensions as

!'_ First Order Expressions

i Mathematical properties

Empty range for sum
Y lo, hi e hi <=lo = sum {int k in(lo:hi); a[k]} = 0

Induction for sum

V lo, hielo <= hi=
sum {int k in(lo:hi+1); a[k]}
= sum {int k in(lo:hi); a[k]} + a[hi]

i Comprehension Translation

Introduce and axiomatise one BoogiePL
function for each different comprehension

template occurring in the Spec# program.
Example:
ensures result == sum{int k in (i:j), true; a[k]};

The BoogiePL translations of:
int k in (i:j), true, a[k] are
, j, true, ArrayGet($Heap[a, $elements], k)]

‘L Example:

sum{int k in (i:j); a[k]}

= Comprehension template
(sum, [, ArrayGet(L1, k))

= Comprehension function

function sum#0(i:int, j : int, a0 :bool, al:Elements)
returns (int);

= [ranslate to BoogiePL
sum#0(i, j, true, $Heap[a, $elements])

i AXioms

= For each comprehension function, our translation also
generates a number of axioms.

= Quantifier instantiation via e-graph matching

s A matching pattern (trigger)is a set of terms that
together mention all the bound variables, none of

which is just a bound variable by itself

= Examples:
s (VX {f(xX)} 0<1f(X))
= (Wxy i {glxy) ; f(x) <a(xy))

i Triggers

= Fragile e.g +
vx:int e {g(x+1)} h(x) = g(x+1)
doesn’t match g(2+y-1) or g(1+y)

= Not limiting enough

vx:int e {h(x)} h(x) < h(k(x))

e matches any argument of h

e the instantiation produces a term with another
argument of h

e if h(x) occurs in the e-graph, then this quantifier will
be instantiated with x, k(x), k(k(x)), ... causing a
matching loop

i AXioms

= For every comprehension template, our encoding
introduces not one, but two function symbols

sum#n and s#n.

= We axiomatise these to be synonyms of each other

(V lo:int, hi :int, aa: T e {sum#n(lo, hi, aa)}
sum#n(lo, hi, aa) = s#n(lo, hi, aa))

i Unit

AXiom

Vv lo: int, hi : int, aa:T e {s#n(lo, hi, aa)}
(V k: int e lo <=k A k < hi = =Filter [aa, k])
= s#n(lo, hi, aa) =0

= Empty range property is a special case

= Trigger says for the outer quantifier to be
instantiated for every occurrence of s#n

= [The inher ¢

SO We need

uantifier appears in a negative position
not worry about triggers for it.

i Induction

= Susceptible to matching loops

= Limit each sum#n expression in the input to one
instantiation of each induction axiom

= Achieved by mentioning sum#n, not s#n, in the
triggers

= We provide four induction axioms altogether
=« Induction below relates
s#n(lo, hi, aa) and s#n(lo + 1, hi, aa)
= induction above relates
s#n(lo, hi, aa) and s#n(lo, hi — 1, aa)

i Induction Below Axiom

Vv lo: int, hi : int, aa:T ¢ {sum#n(lo, hi, aa)}
lo < hi A Filter [aa, l0]
—
s#n(lo, hi, aa) =
s#n(lo + 1, hi, aa) + Term[aa, lo]

i Induction Above Axiom

V lo: 1nt, h1 : int, aa:T ¢ {sum#n(lo, hi, aa)}
lo < h1 A Filter [aa, hi-1]
= s#n(lo, h1, aa) = s#n(lo, h1 —1, aa) + Term[aa, h1 -1]

Alternative triggers avoid matching loops but are fragile
= s#n(lo + 1, hi, aa)
= s#n(lo, h1 — 1, aa)

i Split Range Axiom

Vv lo:int, mid :int, hi :int, aa:T e
{sum#n(lo, mid, aa), sum#n(mid, hi, aa)}
{sum#n(lo, mid, aa), sum#n(lo, hi, aa)}
lo <= mid A mid <= hi
—
s#n(lo, mid, aa) + s#n(mid, hi, aa) = s#n(lo, hi, aa)

i Comments on Triggers

= Each trigger mentions two terms, because there is no
single term that covers all bound variables

= The trigger {sum#n(lo, hi, aa), sum#n(mid, hi, aa)} is
omitted due to its impact on performance

= The triggers use sum#n, despite the fact that using
s#n would not lead to any matching loop.

= Using s#n has a detrimental impact on performance
(by as much as a factor of 10 for our examples)

i Same Term Axiom

Vv lo:int, hi:int, aa:T, bb:T e
{sum#n(lo, hi, aa), s#n(lo, hi, bb)}
(Vk:intelo<=k<hi =
Filter[aa, k] = Filter[bb, k] A
Filter[aa, k] = Term[aa, k] = Term[bb, k])

= s#n(lo, hi, aa) = s#n(lo, hi, bb))

Same Term Axiom ...

= The inner quantifier appears in a negative position
= SO we need not worry about a trigger for it

= For the outer quantifier, we could have chosen the
trigger {s#n(lo, hi , aa), s#n(lo, hi, bb)}.
= the trigger with two s#n terms gave rise to
unacceptable performance

= SO we chose to use sum#n in one of the terms

= We also tried the trigger {sum#n(lo, hi, aa),
sum#n(lo, hi, bb)}

= but that was too restrictive for our example programs

i Distribution (of plus over min/max)

V lo: int, hi: int, aa:T,
{min#n(lo, hi, aa) +
(Vkiintelo <=kAa

ob:T, D: int e
D, m#n(lo, hi, bb)}

K < hi =

(Filter [aa, k] = Filter [bb, k]) A
(Filter [aa, k] = Term[aa, k] + D = Term[bb, k]))

AN

(3 k:intelo <=k A k < hi A Filter [aa, k] A

Term[aa, k] + D

= m#n(lo, hi, aa) +

= Term[bb, k])

D = m#n(lo, hi, bb)

i Triggers

s The nested universal quantifier appears in a negative
position
= so we need not worry about a trigger for it
m The trigger for the existential quantifier matters

= what makes a good trigger for it depends on the
comprehension template - we specify no trigger but include

Term[aa, k] + D = Term[bb, k] to give the SMT solver a
chance of finding a trigger
m The trigger of the outer quantifier 1s problematic

= 1t mentions + and 1s therefore fragile rendering the axiom
useless for Z.3.

i Adequacy of Axiomatisation 1

= All axioms concern just one comprehension
function

= No axiom relates two different comprehension
functions
= sum{int k in (i:j); a[k]};
sum#0(i, j, true, $Heap[a, $elements])
« sum{int k in (0:a.Length), i<= k && k<j ; a[k]};

sum#1(0, $ArrayLength(a), |, j,
$Heap[a,$elements])

i Adequacy of Axiomatisation 2

= Using sum#n instead of s#n in some triggers limits
the number of quantifier instantiations.
= However, the instantiations are adequate for all of the
examples we tried.
= Using Simplify as the SMT solver, we have not
experienced any problems with the fragile trigger of
the distribution axiom.

= The lack of the distribution axiom for Z3 means that
it cannot verify examples like Minimal Segment Sum.

i Adequacy of Axiomatisation 3

= Ranges of size 0 or 1 can be addressed by the
unit and induction axioms

= All larger ranges can be addressed by
decomposing them into smaller ranges with the

split range axiom

= An induction axiom that enlarges the range at the
lower end, as in (lo-1:h) is not needed

= reason about the ranges
(lo: lo+1) and (lo +1:hi)
= use the split range axiom

i Triggers are an issue.

public int ReverseSum(int[] a)
ensures result == sum{int i in (0: a.Length); a[i]};
{ ints =0;

for (int n = a.Length; 0 < = --n;)

invariant 0 <= n && n <= a.Length;

invariant s == sum{int i in (n: a.Length); a[i]};

{

S +=a[n];
)
return s;

i Triggers are an Issue!

public int ReverseSum(int[] a)
ensures result == sum{int i in (0: a.Length); a[i]};
{ ints =0;

for (int n = a.Length; 0 < = --n;)

invariant 0 <= n && n <= a.lLength;

invariant s == sum{int i in (n: a.Length); a[i]};

{

assert a[n] == sum{intiin (n: n+1); a[i]};

, S += a[n]; ‘

return s; Prover directive to trigger
1 instantiation of the induction axiom

!'_ Some More Difficult Examples

Loop Iterations
Coincidence Count
Minimal Segment Sum

i Loop Iterations

public static int SumO(int[] a)
ensures result == sum{int11in (0 : a.Length); a[1]};
{ ints=0;

for (int n = 0; n < a.Length; n++)

invariant n <= a.Length && s == sum{int11n (0 : n); a1]};

{

s += a[n];
}
return s;

Loop Iterations

public static int Suml(int[] a)
ensures result == sum{int11in (0 : a.Length); a[1]};
{ mmts=0;

for (int n = 0; n < a.Length; n++)

invariant n <= a.Length &&
s + sum{int11in (n : a.Length); a[1]}

== sum{intiin (0: a.Length); a[i]}

{

s += a[n];
}
return s;

i Loop Iterations

public static int Sum2(int[] a)
ensures result == sum{int11in (0 : a.Length); a[1]};
{ ints=0;

for (int n = a.Length;0 <= --n;)

invariant O<=n && n <= a.Length &&

S == sum{int 11n (Il: a.Length); a[i]},

{

s += a[n];
}
return s;

Loop Iterations

public static int Sum3(int[] a)
ensures result == sum{int11in (0 : a.Length); a[1]};
{ mmts=0;

for (int n = a.Length; O<= --n;)

invariant O<=n && n<= a.Length &&
s + sum{int11in (O : n); a[1]}

== sum{intiin (0: a.Length); a[i]}

{

s += a[n];
}
return s;

i Coincidence Count

public int CoincidenceCount(int[] f, int[] g)

requires
forall{int i in (0:f.Length),
int j in (i+1:f.Length), i <j; f[i] < f[3]};
forall{int i in (0: g.Length),
intjin (i+1:g.Length), i <j; g[i] < g[jl};
ensures
result == count{int i in (0:f.Length),

int j in (0:g.Length); f[i] == g[j]};

i Coincidence Count

s Inefficient version

= Efficient version
= Initial attempts required many Spec# assertions

= Using two triggers for the split range axiom
eliminates the need for Spec# assertions
{sum#n(lo,mid, aa), sum#n(mid, hi, aa)}
{sum#n(lo, mid, aa), sum#n(lo, hi, aa)}
= Efficient version using an alternative
Invariant

i Inefficient Version:Invariant

m <= f.Length || n <= g.Length;

ct ==
count {intiin (0:m), intjin (0:n); f[i] == g[jl};

m == f.Length || forall {intj in (0:n); g[j] < flm]}
n == g.Length || forall {intjin (0:m); f[i] < g[n]}

i Inefficient Version:Program

intct=0;intm=20; intn =0;
while (m < f.Length || n < g.Length)

{

if (n == g.Length) ||(m < f.Length && flm] < g[n])
m++;

else if (m == f.Length) || (n < g.Length && g[n] < f[m])
n++;

else // (g[n] == f[m])

{
ct++;m++;n++;

}

return ct;

}

i Efficient Version:Invariant

m <= f.Length <= g.Length;
1\

Change from | | to &&

ct ==
count {intiin (0:m), intjin (0:n); f[i] == g[jl};

m == f.Length || forall {intjin (0:n); g[j] < flm]}
n == g.Length || forall {intjin (0:m); f[i] < g[n]}

i Efficient Version:Program

intct=0;intm=20; intn =0;
while (m < f.Length{ && n < g.Length)

{

If (r==-g-tength)H{m<fitength&& f(m] < g[n])
m++;

else if (mM==ftength)y1Hr<gtength-&& g[n] < f[m])
n++;

else // (g[n] == f[m])

{
ct++;m++;n++;

}

return ct;

}

i Alternative Invariant

ct + count{int i in (m:f.Length),
int j in (n:g.Length); f[i] == g[j]}

count{int i in (0:f.Length),
int j in (0:g.Length); f[i] == g[jl};

i Using Spec#

->

Demonstration of invoking the compiler and
Boogie to verify a program that uses
comprehensions

Evaluation: Performance

Acceptable with the two first order SMT solvers, Simplify and
Z3.

In most cases, the Z3 solver verifies the programs slightly faster
than Simplify.
/.3 cannot verify our Factorial or MinSegmentSum examples

= multiplications by non-constants
= distribution of + over the min comprehension

/.3 cannot verify CoincidenceCountl

= If we remove the first of the two triggers for the split range axiom for
the outer count comprehension, Z3 verifies the program in less than 2
seconds.

= The problem therefore seems related to the first of these triggers setting
off a chain of instantiations that prevent Z3 from completing the
verification.

i Performance

Program Simplify Z3
Sum0 0.219s 0.172s
Suml 0.063s 0.016s
Sum?2 0.047s 0.016s
Sum3 0.110s 0.016s
Factorial 0.172s

MinSegmentSum 16.063s
CoincidenceCount0 | 6.017s 1.815s
CoincidenceCountl | 18.970s
CoincidenceCount2 | 12.907s 1.16s

Measurements (in seconds) of verification performance on a Core 2 Duo laptop,
running at 2.33GHz with a 4 MB L2 cache and the current version of Spec#.

i Conclusions

= Implemented support for summation-like
comprehensions in an automatic program
verifier

= We need (and welcome help with)
= More informative error messages
= More case studies & examples

= Support for mathematical data structures
and abstraction

= http://research.microsoft.com/specsharp
= http://www.cs.nuim.ie/~rosemary/

