
Verification of C# programs
using Spec# and Boogie 2

IFM Tutorial 2010

Rosemary Monahan
National University of Ireland, Maynooth

With thanks to K. Rustan M. Leino, Microsoft Research and Peter
Müller, ETH Zurich for work on previous tutorials

Rosemary.Monahan@NUIM.ieIFM 2010 2

Goal:

Learn to use Spec# to verify programs

Aim:

Specifications should be detailed enough that

programs can be verified statically

Ideal Background:

Basic familiarity with object oriented programming

concepts and the syntax of Java-like languages

Tutorial Overview

Rosemary.Monahan@NUIM.ieIFM 2010

Structure:

� Spec# overview and installation

� Programming in the small:

� Preconditions, Postconditions, Loop invariants

� Programming in the large:

� Object invariants, Ownership,

� A look behind the scenes:

� Boogie 2: An intermediate verification language

� Overview of other verification language research

3

Tutorial Overview

Introducing Spec#

Spec#: An Overview

Installing Spec#

Using Spec#

Rosemary.Monahan@NUIM.ieIFM 2010 5

The Spec# Programming System

The Spec# Programming System provides language and tool
support for static verification of object oriented programs.

The Spec# programming language:
� an extension of C# with non-null types, checked exceptions and throws

clauses, method contracts and object invariants.

The Spec# compiler:
� statically enforces non-null types
� emits run-time checks for method contracts and invariants
� records the contracts as metadata for consumption by downstream tools

The Spec# static program verifier (Boogie):
� generates logical verification conditions from a Spec# program
� uses an automatic theorem prover (Z3) to analyse the verification

conditions proving the correctness of the program or finding errors in it

Rosemary.Monahan@NUIM.ieIFM 2010 6

How do we use Spec#?

� The programmer writes each class containing methods
and their specification together in a Spec# source file
(similar to Eiffel, similar to Java + JML)

� Invariants that constrain the data fields of objects may
also be included

� We then run the verifier

� The verifier is run like the compiler—either from the IDE
or the command line.

� In either case, this involves just pushing a button, waiting, and
then getting a list of compilation/verification error messages, if
they exist.

� Interaction with the verifier is done by modifying the source file.

Rosemary.Monahan@NUIM.ieIFM 2010 7

Installing Spec#

Download the latest version of Spec# from

http://specsharp.codeplex.com/

� The Spec# installation requires Visual Studio.

� Installation includes the compiler, VS plug-in, Boogie 2, Z3

� Optional: Simplify
� Programs may also be written in any editor and saved as

Spec# files (i.e. with a .ssc extension).

� Visual Studio projects provide immediate feedback when
an error is detected

Rosemary.Monahan@NUIM.ieIFM 2010 8

Rosemary.Monahan@NUIM.ieIFM 2010 9

Structure of .NET programs

� Programs are split into source files (.ssc).

� Source files are collected into projects (.sscproj).

� Each project is compiled into one assembly (.dll .exe) and
each project can use its own language and compiler.

� Projects are collected into solutions (.sln).

� Typical situation: 1 solution with 1 project and many source
files.

� Note that the compiler does not compile individual source
files, but compiles projects. This means that there need not
be a 1:1 correspondence between classes and files.

Rosemary.Monahan@NUIM.ieIFM 2010 10

Using the Visual Studio IDE

� Open Visual Studio
� Set up a new Project (File -> new -> project)
� Open a Spec# project console application.(Spec# projects -> Console

application)

using System;

using Microsoft.Contracts;

public class Program

{

public static void Main(string![]! args)

{

Console.WriteLine("Spec# says hello!");

}

}

� Build the solution (Build -> Build Solution) F6
� Execute the program (Debug -> Start) F5
� Tip: adding Console.Read(); to the end of your program requires that the user

presses a key before the screen disappears.

Rosemary.Monahan@NUIM.ieIFM 2010

Interactive mode (in VS 2008)

� To run the program verifier as you program, set the

RunProgramVerifierWhileEditing to True

� Find this in the project properties option of the project
menu. Click on Configuration Properties, then Build and
under Misc.

� This means that you get verification errors underlined in
green as you type. Anything underlined in red is a
compilation error.

� To run the verifier when debugging (F6), set
RunProgramVerifier to True

� Under the Misc heading as above.

<Counter.ssc> <MinFct.ssc>
11

Rosemary.Monahan@NUIM.ieIFM 2010

Using your favourite Editor

� Type up your Spec# program e.g.
using System;

using Microsoft.Contracts;

public class Program

{

public static void Main(string![]! args)

{

Console.WriteLine("Spec# says hello!");

Console.Read();

}

}

� Save it with a .ssc extension e.g. Program.ssc

Rosemary.Monahan@NUIM.ieIFM 2010 13

Using Boogie at the Command line

� Open a command prompt
� Go to the directory where you have specsharp installed or add it to your path (e.g.

C:\Program Files\specsharp\)

� Compile Program.ssc stored in on C:\temp using

C:\temp> ssc /t:library /debug Program.ssc

This generates files called Program.dll and program.pdb
which are stored in C:\temp.

� C:\temp> ssc Program.ssc compiles Program.ssc into a .exe
executable.

� C:\temp> sscboogie Program.dll (or Program.exe) verifies
the compiled file using the SMT solver Z3.

Rosemary.Monahan@NUIM.ieIFM 2010

Using Boogie at the Command line

� To create Boogie PL programs use

sscboogie Program.dll /print:Program.bpl

� To get more feedback on the verification process use
sscboogie Program.dll /trace

� Further switches can be seen by typing sscboogie /help

or ssc /help

� To execute the program type Program.exe

Rosemary.Monahan@NUIM.ieIFM 2010 15

The Language

� The Spec# language is a superset of C#, an
object-oriented language targeted for the .NET
platform

� C# features include single inheritance whose classes can
implement multiple interfaces, object references,
dynamically dispatched methods, and exceptions

� Spec# extends C# with contracts allowing programmers
to document their design decisions in their code (with
support for non-null types, checked exceptions and
throws clauses, method contracts and object invariants).

Non-Null Types

!

Rosemary.Monahan@NUIM.ieIFM 2010 17

Non-Null Types

� Many errors in modern programs manifest
themselves as null-dereference errors

� Spec# tries to eradicate all null dereference errors

� In C#, each reference type T includes the value null

� In Spec#, type T! contains only references to
objects of type T (not null).

int []! xs;

declares an array called xs which cannot be null

Rosemary.Monahan@NUIM.ieIFM 2010 18

Non-Null Types

� If you decide that it's the caller's responsibility to
make sure the argument is not null, Spec# allows
you to record this decision concisely using an
exclamation point.

� Spec# will also enforce the decision at call sites
returning Error: null is not a valid argumentError: null is not a valid argumentError: null is not a valid argumentError: null is not a valid argument if a null
value is passed to a method that requires a non
null parameter.

Rosemary.Monahan@NUIM.ieIFM 2010

Non-Null Example

using System;
using Microsoft.Contracts;
class NonNull
{
public static void Clear(int[] xs)
{

for (int i = 0; i < xs.Length; i++)
{

xs[i] = 0;
}

}

}

Where is the possible null dereference?

Rosemary.Monahan@NUIM.ieIFM 2010

Non-Null Example

using System;

using Microsoft.Contracts;

class NonNull

{

public static void Clear(int[] xs)

{

for (int i= 0; i < xs.Length; i++) //Warning: Possible null dereference?

{

xs[i] = 0; //Warning: Possible null dereference?

}

}

}

Rosemary.Monahan@NUIM.ieIFM 2010

Non-Null Example

using System;
using Microsoft.Contracts;
class NonNull
{
public static void Clear(int[] ! xs)
{

for (int i = 0; i < xs.Length; i++) // No Warning due to !
{

xs[i] = 0; // No Warning due to !

}

}

}

Rosemary.Monahan@NUIM.ieIFM 2010

Non-Null Example

using System;
using Microsoft.Contracts;
class NonNull
{
public static void Clear(int[] ! xs)
{

for (int i = 0; i < xs.Length; i++)
{

xs[i] = 0;
}

}

}

class ClientCode
{

static void Main()
{

int[] xs = null;
NonNull.Clear(xs);

}
}

Rosemary.Monahan@NUIM.ieIFM 2010

Non-Null Example

using System;
using Microsoft.Contracts;
class NonNull
{
public static void Clear(int[] ! xs)
{

for (int i = 0; i < xs.Length; i++)
{

xs[i] = 0;
}

}

}

class ClientCode
{

static void Main()
{

int[] xs = null;
NonNull Clear(xs);

}
}

“Null cannot be used where
a non-null value is expected”

Rosemary.Monahan@NUIM.ieIFM 2010

Non-Null by Default

Without /nn /nn

Possibly-null T T T?

Non-null T T! T

24

From Visual Studio, select right-click Properties on the
project, then Configuration Properties, and set
ReferenceTypesAreNonNullByDefault to true

When we compile a Spec# program at the command
line we can use the switch /nn to make non-null types
the default:

ssc /t:library /debug /nn Program.ssc

Rosemary.Monahan@NUIM.ieIFM 2010

Initializing Non-Null Fields

class C {
T! x;
public C(T! y) {

x = y;
}
public C(int k) {

x = new T(k);
}
…

25

Rosemary.Monahan@NUIM.ieIFM 2010

� In C#, if the constructor body does not explicitly call a
constructor, a call base() is inserted by the compiler at
the beginning of the body (immediately following the
field initialisers).

� Before the base() constructor has been called, we say
that the object this is delayed.

26

Delayed Constructors

Rosemary.Monahan@NUIM.ieIFM 2010

Initializing Non-Null Fields

class C {
T! x;
public C(int k) {

x = new T(k);
x.M();

}

27

Delayed receiver is
not compatible with
non-delayed method

Rosemary.Monahan@NUIM.ieIFM 2010

Delayed Constructors

� The default in Spec# is that this is delayed
throughout the constructor body

� This means that we cannot assume non-null fields
to be non-null (and we cannot assume that object
invariants hold) until the constructor call
terminates.

� Hence, the object under construction can only be
used as the target object in field assignments.

� This is why we get an error when we call x.M() in our
previous example.

28

Rosemary.Monahan@NUIM.ieIFM 2010

Initializing Non-Null Fields

using Microsoft.Contracts;
class C {

T! x;
[NotDelayed]
public C(int k) {

x = new T(k);
base();
x.M();

}

29

Allows fields of
the receiver to be
read

Allows fields of
the receiver to be
read

Spec# allows base
calls anywhere in
a constructor.

Spec# allows base
calls anywhere in
a constructor.

In non-delayed constructors, all non-null fields
(e.g. x) must be initialized before calling base

In non-delayed constructors, all non-null fields
(e.g. x) must be initialized before calling base

Rosemary.Monahan@NUIM.ieIFM 2010

Non-Null and Delayed References

� Declaring and checking non-null types in an object-
oriented language. Manuel Fähndrich and
K. Rustan M. Leino. In OOPSLA 2003, ACM.

� Establishing object invariants with delayed types.
Manuel Fähndrich and Songtao Xia. In OOPSLA
2007, ACM.

� Using the Spec# Language, Methodology, and Tools
to Write Bug-Free Programs. K. Rustan M. Leino
and Peter Müller. On specsharp.codeplex.com

30

Assert

Rosemary.Monahan@NUIM.ieIFM 2010 32

Assert Statements

public class Assert
{

public static void Main(string![]! args)
{
foreach (string arg in args)
{ if (arg.StartsWith("Hello"))

{ assert 5 <= arg.Length; // runtime check
char ch = arg[2];
Console.WriteLine(ch);

}
}
}

} <Assert.ssc>

Rosemary.Monahan@NUIM.ieIFM 2010 33

Assert Statements

public class Assert
{

public static void Main(string![]! args)
{
foreach (string arg in args)
{ if (arg.StartsWith("Hello"))

{ assert 5 < arg.Length; // runtime error
char ch = arg[2];
Console.WriteLine(ch);

}
}
}

}

Rosemary.Monahan@NUIM.ieIFM 2010

Assume Statements

� The statement assume E; is like assert E; at run-
time, but the static program verifier checks the
assert whereas it blindly assumes the assume.

34

Design by Contract

Code Examples on
http://ifm2010.loria.fr/satellite.html

See subfolder Part1

Rosemary.Monahan@NUIM.ieIFM 2010 36

Design by Contract

� Every public method has a precondition and a

postcondition

� The precondition expresses the constraints under

which the method will function properly

� The postcondition expresses what will happen

when a method executes properly

� Pre and postconditions are checked

� Preconditions and postconditions are side effect

free boolean-valued expressions - i.e. they

evaluate to true/false and can’t use ++

Static Verification

Rosemary.Monahan@NUIM.ieIFM 2010 38

Static Verification

� Static verification checks all executions

� Spec# characteristics

� sound modular verification

� focus on automation of verification rather than full functional

correctness of specifications

� No termination verification

� No verification of temporal properties

� No arithmetic overflow checks

Rosemary.Monahan@NUIM.ieIFM 2010

s
ta

ti
c
 v

e
ri
fi
e
r

(B
o
o
g
ie

 t
o
o
l)

s
ta

ti
c
 v

e
ri
fi
e
r

(B
o
o
g
ie

 t
o
o
l)

MSIL (“bytecode”)

SMT solver (Z3)SMT solver (Z3)

V.C.

generator

V.C.

generator

Inference engineInference engine

TranslatorTranslator

verification condition

“correct” or list of errors

Spec# compilerSpec# compiler

Spec#

Boogie

language

Boogie

language

Spec# verifier architecture

Rosemary.Monahan@NUIM.ieIFM 2010 40

static void Swap(int[] a, int i, int j)

requires

modifies

ensures

{

int temp;

temp = a[i];

a[i] = a[j];

a[j] = temp;

}

The Swap Contract

Rosemary.Monahan@NUIM.ieIFM 2010 41

static void Swap(int[]! a, int i, int j)

requires 0 <= i && i < a.Length;

requires 0 <= j && j < a.Length;

modifies a[i], a[j];

ensures a[i] == old(a[j]);

ensures a[j] == old(a[i]);

{

int temp;

temp = a[i];

a[i] = a[j];

a[j] = temp;

}

The Swap Contract

Rosemary.Monahan@NUIM.ieIFM 2010 42

The Swap Contract

requires annotations
denote preconditions

static void Swap(int[]! a, int i, int j)

requires 0 <= i && i < a.Length;

requires 0 <= j && j < a.Length;

modifies a[i], a[j];

ensures a[i] == old(a[j]);

ensures a[j] == old(a[i]);

{

int temp;

temp = a[i];

a[i] = a[j];

a[j] = temp;

}

Rosemary.Monahan@NUIM.ieIFM 2010 43

Modifies Clauses

frame conditions limit

the parts of the program state

that the method is allowed to modify.

static void Swap(int[]! a, int i, int j)

requires 0 <= i && i < a.Length;

requires 0 <= j && j < a.Length;

modifies a[i], a[j];

ensures a[i] == old(a[j]);

ensures a[j] == old(a[i]);

{

int temp;

temp = a[i];

a[i] = a[j];

a[j] = temp;

}

Rosemary.Monahan@NUIM.ieIFM 2010 44

Swap Example:

old(a[j]) denotes the

value of a[j] on entry

to the method

static void Swap(int[]! a, int i, int j)

requires 0 <= i && i < a.Length;

requires 0 <= j && j < a.Length;

modifies a[i], a[j];

ensures a[i] == old(a[j]);

ensures a[j] == old(a[i]);

{

int temp;

temp = a[i];

a[i] = a[j];

a[j] = temp;

}

Rosemary.Monahan@NUIM.ieIFM 2010 45

Result

result denotes the

value returned by the
method

static int F(int p)

ensures 100 < p ==> result == p – 10;

ensures p <= 100 ==> result == 91;

{

if (100 < p)

return p – 10;

else

return F(F(p+11));

}

Rosemary.Monahan@NUIM.ieIFM 2010

Spec# Constructs so far

� ==> short-circuiting implication

� <==> if and only if

� result denotes method return value

� old(E) denotes E evaluated in method’s pre-state

� requires E; declares precondition

� ensures E; declares postcondition

� modifies w; declares what a method is allowed to modify

� assert E; in-line assertion

46

Rosemary.Monahan@NUIM.ieIFM 2010

Modifies Clauses

� modifies w where w is a list of:

� p.x field x of p

� p.* all fields of p

� p.** all fields of all peers of p

� this.* default modifies clause, if this-dot-something is
not mentioned in modifies clause

� this.0 disables the “this.*” default

� a[i] element i of array a

� a[*] all elements of array a

47

Rosemary.Monahan@NUIM.ieIFM 2010

Modifies Clauses

<Rectangle.ssc>

� We can use a postcondition to exclude some
modifications (from the default this.*)

� Like MoveToOrigin in Rectangle.ssc

� We can use a modifies clause to allow certain
modifications

� like Transpose in Rectangle.ssc

� x++; x--; in a method => must have a modifies clause

Loop Invariants

Rosemary.Monahan@NUIM.ieIFM 2010

Computing Square by Addition

public int Square(int n)
requires 0 <= n;
ensures result == n*n;

{
int r = 0;
int x = 1;
for (int i = 0; i < n; i++)
invariant i <= n;
invariant r == i*i;
invariant x == 2*i + 1;

{
r = r + x;
x = x + 2;

}
return r;

}

50

Square(3)
• r = 0 and x = 1 and i = 0
• r = 1 and x = 3 and i = 1
• r = 4 and x = 5 and i = 2
• r = 9 and x = 7 and i = 3

Rosemary.Monahan@NUIM.ieIFM 2010

Loop Invariants

public static int ISqrt(int x)

requires 0 <= x;

ensures result*result <= x && x < (result+1)*(result+1);

{

int r = 0;

while ((r+1)*(r+1) <= x)

invariant r*r <= x;

{

r++;

}

return r;

} <Isqrt.ssc>

51

Rosemary.Monahan@NUIM.ieIFM 2010

Loop Invariants

public static int ISqrt1(int x)

requires 0 <= x;

ensures result*result <= x && x < (result+1)*(result+1);

{

int r = 0; int s = 1;

while (s<=x)

invariant r*r <= x;

invariant s == (r+1)*(r+1);

{

r++;

s = (r+1)*(r+1);

}

return r;

}

52

Rosemary.Monahan@NUIM.ieIFM 2010 53

Quantifiers in Spec#

Examples:

� forall {int k in (0: a.Length); a[k] > 0};

� exists {int k in (0: a.Length); a[k] > 0};

� exists unique {int k in (0: a.Length); a[k] > 0};

Rosemary.Monahan@NUIM.ieIFM 2010 54

Quantifiers in Spec#

Examples:

� forall {int k in (0: a.Length); a[k] > 0};

� exists {int k in (0: a.Length); a[k] > 0};

� exists unique {int k in (0: a.Length); a[k] > 0};

void Square(int[]! a)
modifies a[*];
ensures forall{int i in (0: a.Length); a[i] == i*i};

<Search.ssc>

Rosemary.Monahan@NUIM.ieIFM 2010 55

Loop Invariants
void Square(int[]! a)

modifies a[*];
ensures forall{int i in (0: a.Length); a[i] == i*i};
{

int x = 0; int y = 1;
for (int n = 0; n < a.Length; n++)
invariant 0 <= n && n <= a.Length;
invariant forall{int i in (0: n); a[i] == i*i};
{ a[n] = x;

x += y;
y += 2;

}
} <SqArray.ssc>

Rosemary.Monahan@NUIM.ieIFM 2010

Error Message from Boogie

Spec# program verifier version 2, Copyright (c) 2003-

2010, Microsoft.

Error: After loop iteration: Loop invariant

might not hold: forall{int i in (0: n); a[i] == i*i}

Spec# program verifier finished with 1 verified, 1 error

<SqArray1.ssc>

Rosemary.Monahan@NUIM.ieIFM 2010 57

Inferring Loop Invariants
void Square(int[]! a)

modifies a[*];
ensures forall{int i in (0: a.Length); a[i] == i*i};
{

int x = 0; int y = 1;
for (int n = 0; n < a.Length; n++)
invariant 0 <= n && n <= a.Length;
invariant forall{int i in (0: n); a[i] == i*i};
invariant x == n*n && y == 2*n + 1;
{ a[n] = x;

x += y;
y += 2;

}
}

Inferred by /infer:p

Inferred by default

Rosemary.Monahan@NUIM.ieIFM 2010 58

Comprehensions in Spec#

Examples:

� sum {int k in (0: a.Length); a[k]};
� product {int k in (1..n); k};
� min {int k in (0: a.Length); a[k]};
� max {int k in (0: a.Length); a[k]};
� count {int k in (0: n); a[k] % 2 == 0};

Intervals:
� The half-open interval {int i in (0: n)}

means i satisfies 0 <= i < n

� The closed (inclusive) interval {int k in (0..n)}
means i satisfies 0 <= i <= n

Rosemary.Monahan@NUIM.ieIFM 2010 59

Invariants: Products
public static int Product(int[]! a)
ensures result == product{int i in (0: a.Length); a[i]};

{
int ans = 1;
for (int n = 0; n < a.Length; n++)
invariant n <= a.Length;
invariant ans == product{int i in (0: n); a[i]};
{

ans *= a[n];
}

return ans;
} <Product.ssc>

Rosemary.Monahan@NUIM.ieIFM 2010 60

Quantifiers in Spec#

We may also use filters:

� sum {int k in (0: a.Length), 5<=k; a[k]};

� product {int k in (0..100), k % 2 == 0; k};

Note that the following two expressions are equivalent:

� sum {int k in (0: a.Length), 5<=k; a[k]};

� sum {int k in (5: a.Length); a[k]};

Rosemary.Monahan@NUIM.ieIFM 2010 61

public static int SumEvens(int[]! a)
ensures result == sum{int i in (0: a.Length), a[i] % 2 == 0; a[i]};
{
int s = 0;
for (int n = 0; n < a.Length; n++)

invariant n <= a.Length;
invariant s == sum{int i in (0:n), a[i] % 2 == 0; a[i]};

{
if (a[n] % 2 == 0)
{

s += a[n];
}

}
return s;

}

Using Filters

Filters the even values
From the quantified range

Rosemary.Monahan@NUIM.ieIFM 2010 62

public static int SeqSum(int[] a, int i, int j)
{

int s = 0;
for (int n = i; n < j; n++)
{

s += a[n];
}
return s;

}

<SegSum.ssc>

Segment Sum Example:

Rosemary.Monahan@NUIM.ieIFM 2010 63

A method that sums the elements in a segment of an

array a i.e. a[i] + a[i+1] + … + a[j-1]

may have the following contract:

public static int SegSum(int[]! a, int i, int j)

requires 0<= i && i <= j && j <= a.Length;

ensures result == sum{int k in (i: j); a[k]};

Using Quantifiers in Spec#

Non-null typePost condition

Precondition

Rosemary.Monahan@NUIM.ieIFM 2010 64

public static int SegSum(int[]! a, i int i, int j)

requires 0 <= i && i <= j && j <= a.Length;

ensures result == sum{int k in (i: j); a[k]};

{

int s = 0;

for (int n = i; n < j; n++)

{

s += a[n];

}

return s;

}

Loops in Spec#

Rosemary.Monahan@NUIM.ieIFM 2010 65

public static int SegSum(int[]! a, int i, int j)

requires 0 <= i && i <= j && j <= a.Length;

ensures result == sum{int k in (i: j); a[k]};

{

int s = 0;

for (int n = i; n < j; n++)

{

s += a[n];

}

return s;

}

Loops in Spec#

When we try to verify
this program using Spec#
we get an Error:
Array index possibly below
lower bound as the verifier
needs more information

Rosemary.Monahan@NUIM.ieIFM 2010 66

Postcondition:

ensures result == sum{int k in (i: j); a[k]};

Loop Initialisation: n == i

Loop Guard: n < j

Loop invariant:

invariant s == sum{int k in (i: n); a[k]};

invariant i <= n && n <= j;

Adding Loop Invariants

Introduce the loop
variable & provide
its range.

Rosemary.Monahan@NUIM.ieIFM 2010 67

public static int SegSum(int[]! a, int i, int j)

requires 0 <=i && i <= j && j <= a.Length;

ensures result == sum{int k in (i:j); a[k]};

{ int s = 0;

for (int n = i; n < j; n++)

{

s += a[n];

}

return s;

}

Adding Loop Invariants

invariant i <= n && n <= j;

invariant s == sum{int k in (i:n); a[k]};

Verifier Output:
Spec# Program Verifier
finished with 3 verified,
0 errors

Rosemary.Monahan@NUIM.ieIFM 2010 68

public static int SegSum(int[]! a, int i, int j)

requires 0 <= i && i <= j && j <= a.Length;

ensures result == sum{int k in (i: j); a[k]};

{ int s = 0; int n=i;

while (n < j)

{ int vf = j - n; //variant function

s += a[n]; n++;

assert j - n < vf;

}

return s;

}

Variant Functions:Rolling your own!

invariant i <= n && n <= j;

invariant s == sum{int k in (i: n); a[k]};

invariant 0<= j - n;

We can use assert
statements to determine
information about the
variant functions.

Writing Invariants

Some more examples …

Rosemary.Monahan@NUIM.ieIFM 2010 70

public static int Sum0(int[]! a)

ensures result == sum{int i in (0 : a.Length); a[i]};

{ int s = 0;

for (int n = 0; n < a.Length; n++)

invariant n <= a.Length && s == sum{int i in (0: n); a[i]};

{

s += a[n];

}

return s;

}

Invariant variations: Sum0

This loop invariant

focuses on what has

been summed so far.

Rosemary.Monahan@NUIM.ieIFM 2010 71

public static int Sum1(int[]! a)

ensures result == sum{int i in (0 : a.Length); a[i]};

{ int s = 0;

for (int n = 0; n < a.Length; n++)

invariant n <= a.Length &&

s + sum{int i in (n: a.Length); a[i]}

== sum{int i in (0: a.Length); a[i]}

{

s += a[n];

}

return s;

}

Invariant variations: Sum1

This loop invariant focuses on

what is yet to be summed.

Rosemary.Monahan@NUIM.ieIFM 2010 72

public static int Sum2(int[]! a)

ensures result == sum{int i in (0: a.Length); a[i]};

{ int s = 0;

for (int n = a.Length;0 <= --n;)

invariant 0 <= n && n <= a.Length &&

s == sum{int i in (n: a.Length); a[i]};

{

s += a[n];

}

return s;

}

Invariant variations: Sum2

This loop invariant

that focuses on what

has been summed so far

Rosemary.Monahan@NUIM.ieIFM 2010 73

public static int Sum3(int[]! a)

ensures result == sum{int i in (0 : a.Length); a[i]};

{ int s = 0;

for (int n = a.Length; 0<= --n)

invariant 0 <= n && n<= a.Length &&

s + sum{int i in (0: n); a[i]}

== sum{int i in (0: a.Length); a[i]}

{

s += a[n];

}

return s;

}

Invariant variations:Sum3

This loop invariant focuses on

what has been summed so far

Rosemary.Monahan@NUIM.ieIFM 2010 74

public int Counting(int[]! a)

ensures result == count{int i in (0: a.Length); a[i] == 0};

{

int s = 0;

for (int n = 0; n < a.Length; n++)

invariant n <= a.Length;

invariant s == count{int i in (0: n); a[i] == 0};

{

if (a[n]== 0) s = s + 1;

}

return s;

}

}

The count Quantifier

Counts the number of
0’s in an int []! a;

Rosemary.Monahan@NUIM.ieIFM 2010 75

The min Quantifier

Calculates the minimum value
in an int []! a;

public int Minimum()

ensures result == min{int i in (0: a.Length); a[i]};

{

int m = System.Int32.MaxValue;

for (int n = 0; n < a.Length; n++)

invariant n <= a.Length;

invariant m == min{int i in (0: n); a[i]};

{

if (a[n] < m)

m = a[n];

}

}

return m;

}

Rosemary.Monahan@NUIM.ieIFM 2010 76

public int MaxEven()

ensures result == max{int i in (0: a.Length), a[i] % 2== 0;a[i]};

{

int m = System.Int32.MinValue;

for (int n = 0; n < a.Length; n++)

invariant n <= a.Length;

invariant m == max{int i in (0: n), a[i] % 2== 0; a[i]};

{

if (a[n] % 2== 0 && a[n] > m)

m = a[n];

}

return m;

}

The max Quantifier

Calculates the maximum even
value in an int []! a;

Rosemary.Monahan@NUIM.ieIFM 2010 77

How to help the verifier …

Recommendations when using comprehensions:
• Write specifications in a form that is as close to the code
as possible.
• When writing loop invariants, write them
in a form that is as close as possible to the postcondition

In our SegSum example where we summed the array
elements a[i] … a[j-1], we could have written the
postcondition in either of two forms:

ensures result == sum{int k in (i: j); a[k]};
ensures result ==

sum{int k in (0: a.Length), i <= k && k < j; a[k]};

Rosemary.Monahan@NUIM.ieIFM 2010 78

How to help the verifier …

Recommendation: When writing loop invariants, write them
in a form that is as close as possible to the postcondition.

ensures result == sum{int k in (i: j); a[k]};

invariant i <= n && n <= j;

invariant s == sum{int k in (i: n); a[k]};

OR

ensures result ==
sum{int k in (0: a.Length), i <= k && k < j; a[k]};

invariant 0 <= n && n <= a.Length;
invariant s == sum{int k in (0: n), i <= k && k < j; a[k]};

Some Additional Examples

<InsertionSort.ssc>

<BinarySearch.ssc>

<Rev.ssc>

…

Rosemary.Monahan@NUIM.ieIFM 2010 80

Insertion Sort
public static void sortArray(int[]! a)

modifies a[*];

ensures forall{int j in (1:a.Length);(a[j-1] <= a[j])};

{

int k; int t;

if (a.Length > 0){

k=1;

while(k < a.Length)

invariant 1 <= k && k <= a.Length;

invariant forall {int j in (1:k), int i in (0:j);(a[i] <= a[j])};
{

//see next slide for nested loop

}

} <InsertionSort.ssc>

Rosemary.Monahan@NUIM.ieIFM 2010

Nested loop of Insertion Sort

for(t = k; t>0 && a[t-1]>a[t]; t--)

invariant 0<=t && t<=k && k < a.Length;

invariant forall{int j in (1:k+1),

int i in (0:j); j==t || a[i] <= a[j] };

{

int temp;

temp = a[t];

a[t] = a[t-1];

a[t-1] = temp;

}

k++;

81

Rosemary.Monahan@NUIM.ieIFM 2010 82

Some more difficult examples…

� Automatic verification of textbook programs that use
comprehensions. K. Rustan M. Leino and Rosemary
Monahan. In Formal Techniques for Java-like Programs,
ECOOP Workshop (FTfJP'07: July 2007, Berlin, Germany)

� A method of programming. Edsger W. Dijkstra and
W. H. J. Feijen

Class Contracts

Code Examples on
http://ifm2010.loria.fr/satellite.html

See subfolder Part2

Rosemary.Monahan@NUIM.ieIFM 2010 84

Object Invariants

� Specifying the rules for using methods is achieved

through contracts, which spell out what is expected of

the caller (preconditions) and what the caller can expect

in return from the implementation (postconditions).

� To specify the design of an implementation, we use an

assertion involving the data in the class called an object

invariant.

� Each object’s data fields must satisfy the invariant at all

stable times

� <RockBand.ssc>

Rosemary.Monahan@NUIM.ieIFM 2010

Invariants Example:RockBand1

public class RockBand

{ int shows;

int ads;

invariant shows <= ads;

public void Play()

{

ads++;

shows++;

}

} <RockBand1.ssc>
85

Rosemary.Monahan@NUIM.ieIFM 2010

Broken Invariant:RockBand2

public class RockBand

{ int shows;

int ads;

invariant shows <= ads;

public void Play()

{

shows++;

ads++;

}

}
86

Rosemary.Monahan@NUIM.ieIFM 2010

Object Invariants:RockBand2

public class RockBand

{ int shows;

int ads;

invariant shows <= ads;

public void Play()

{

shows++;

ads++;

}

}
87

RockBand2.ssc(13,5): Error: Assignment to field
RockBand.shows of non-exposed target object may
break invariant: shows <= ads

Spec# program verifier finished with 4 verified, 1 error

RockBand2.ssc(13,5): Error: Assignment to field
RockBand.shows of non-exposed target object may
break invariant: shows <= ads

Spec# program verifier finished with 4 verified, 1 error

Rosemary.Monahan@NUIM.ieIFM 2010

Expose Blocks:RockBand3

public class RockBand

{ int shows;

int ads;

invariant shows <= ads;

public void Play()

{

expose(this)

{ shows++;

ads++;

}

}

}
88

Rosemary.Monahan@NUIM.ieIFM 2010

Method Reentrancy:RockBand4
public class RockBand

{ int shows;

int ads;

invariant shows <= ads;

public void Play()

{

expose(this)

{ shows++;

Play();

ads++;

}

}

} 89

Rosemary.Monahan@NUIM.ieIFM 2010

Method Reentrancy:RockBand4

public class RockBand

{ int shows;

int ads;

invariant shows <= ads;

public void Play()

{ expose(this)

{ shows++;

Play();

ads++;

}

}

}
90

Verifying RockBand.Play ...
RockBand4.ssc(20,3): Error:

The call to RockBand.Play()
requires target object to be peer consistent

Rosemary.Monahan@NUIM.ieIFM 2010

Method Reentrancy:RockBand5

public class RockBand

{ int shows;

int ads;

invariant shows <= ads;

public void Play()

{

expose(this)

{ shows++;

ads++;

}

Play();

}

} <RockBand6.ssc>

91

Rosemary.Monahan@NUIM.ieIFM 2010

Establishing the Invariant

public class RockBand

{ int shows;

int ads;

invariant shows <= ads;

public RockBand()

{ shows = 0

ads = shows *100;

}

...

}

92

Rosemary.Monahan@NUIM.ieIFM 2010

Object states

� Mutable

� Object invariant might be violated

� Field updates are allowed

� Valid

� Object invariant holds

� Field updates allowed only if they maintain the invariant

Rosemary.Monahan@NUIM.ieIFM 2010

The Heap (the Object Store)

Mutable

Valid

Rosemary.Monahan@NUIM.ieIFM 2010 95

Summary for simple objects

(∀o • o. mutable ∨ Inv (o))b

� invariant … this.f …;

� x.f = E;

o.mutable ≡ ¬ o.valid

Check:

x is mutable

or

the assignment maintains

the invariant

Rosemary.Monahan@NUIM.ieIFM 2010

public class RockBand

{ int shows;

int ads;

invariant shows <= ads;

public void Play()

modifies shows, ads;
ensures ads== old(ads)+1 && shows ==old(shows)+1

{ expose(this) {

shows++;
ads ++;

}
}

}

96

To Mutable and Back: Expose Blocks

changes this

from valid to mutable

changes this

from mutable to valid

can update ads and shows

because this.mutable

Rosemary.Monahan@NUIM.ieIFM 2010 97

class Counter{
int c;
bool even;
invariant 0 <= c;
invariant even <==> c % 2 == 0;
…
public void Inc ()
modifies c;
ensures c == old(c)+1;

{ expose(this) {

c ++;
even = !even ;

}
}

}

To Mutable and Back: Expose Blocks

changes this

from valid to mutable

changes this

from mutable to valid

can update c and even,

because this.mutable

Rosemary.Monahan@NUIM.ieIFM 2010 98

class Counter{
int c;
bool even;
invariant 0 <= c;
invariant even <==> c % 2 == 0;

public Counter()
{ c= 0;

even = true;
}

public void Inc ()
modifies c;
ensures c == old(c)+1;

{ expose (this) {
c++;
even = !even ;

}
}

}

Invariants: Summary

The invariant may be
broken in the constructor

The invariant must be
established & checked
after construction

The object invariant
may be broken within an
expose block

Aggregate Objects and
Ownership

Rosemary.Monahan@NUIM.ieIFM 2010 100

public class Guitar {

public int solos;

public Guitar()

ensures solos == 0;

{

}

public void Strum()

modifies solos;

ensures solos == old(solos) + 1;

{

solos++;

}

}

Sub-Object Example

Rosemary.Monahan@NUIM.ieIFM 2010 101

public class RockBand {

int songs;

Guitar gt;

invariant songs == gt.solos;

public void Play()

{

gt.Strum();

songs++;

}

Aggregate-Object Example

public RockBand()
{

songs = 0;
gt = new Guitar();

}

Rosemary.Monahan@NUIM.ieIFM 2010 102

public class RockBand {

int songs;

Guitar gt;

invariant songs == gt.solos;

public void Play()

{

gt.Strum();

songs++;

}

Aggregate-Object Example

public RockBand()
{

songs = 0;
gt = new Guitar();

}
RockBand[Rep].ssc(7,22): error CS2696: Expression is not
admissible: it is not visibility-based, and first access 'gt'
is non-rep thus further field access is not admitted.

Rosemary.Monahan@NUIM.ieIFM 2010 103

� In Spec#, fields that reference a sub-object of the
aggregate object are declared with the [Rep] attribute,
where “rep” stands for “representation”.

� This makes it possible for the program text to
distinguish between component references and other
object references that a class may have.

� To keep track of which objects are components of which
aggregates, Spec# uses the notion of object ownership.

� An aggregate object owns its component objects.

Aggregate-Objects

Rosemary.Monahan@NUIM.ieIFM 2010

Visibility Based Invariants

� Visibility-based invariants allow the invariant to
dereference fields that are not declared with [Rep]

� Visibility-based invariants are useful to specify invariants
of object structures that are not aggregates.

� A visibility-based invariant may dereference a field
only if the declaration of the invariant is visible
where the field is declared.

� This allows the static verifier to check for every field
update that all objects whose visibility-based invariants
depend on that field are exposed.

Rosemary.Monahan@NUIM.ieIFM 2010 105

public class RockBand {

int songs;

[Rep] Guitar ! gt;

invariant songs == gt.solos;

public void Play()

{

gt.Strum();

songs++;

}

Aggregate-Object

public void Client() {
RockBand b = newRockBand();
b.Play();
b.Play();
}

To fix the error we annotate Guitar with
[Rep] making the RockBand b the owner of
b.gt. (We also make it non null.)

Rosemary.Monahan@NUIM.ieIFM 2010 106

public class RockBand {

int songs;

[Rep] Guitar ! gt;

invariant songs == gt.solos;

public void Play()

{

gt.Strum();

songs++;

}

Aggregate-Object

public void Client() {
RockBand b = new RockBand();
b.Play();
b.Play();
}

Error: The call to Guitar.Strum() requires
target object to be peer consistent (owner
must not be valid)

Rosemary.Monahan@NUIM.ieIFM 2010

Points to owner

x

y z

Peers?

x owns y and z

y and z are components
in the representation of x

y and z are peers

Rosemary.Monahan@NUIM.ieIFM 2010

Peer Consistent?

108

Rosemary.Monahan@NUIM.ieIFM 2010

Object states Reminder

� Mutable

� Object invariant might be violated

� Field updates are allowed

� Valid

� Object invariant holds

� Field updates allowed only if they maintain the invariant

We now sub-divide valid objects into consistent

objects and committed objects.

Rosemary.Monahan@NUIM.ieIFM 2010

Peer Consistent ?

A valid object is consistent if

� it has no owner object or

� its owner is mutable.

This is the typical state in which we apply methods to the

object, for there is no owner that currently places any

constraints on the object.

A valid object is committed it does have an owner and that

owner is in the valid state. Intuitively, this means that any

operation on the object must first consult with the owner.

Rosemary.Monahan@NUIM.ieIFM 2010

Valid objects sub-divided

� A default precondition of a method is that the
receiver be consistent (the methods receiver must
be mutable)

� Therefore to operate on components of the
receiver, the method body must change the
receiver into the mutable state

� We achieve this using an expose statement

111

Rosemary.Monahan@NUIM.ieIFM 2010 112

public class RockBand {

int songs;

[Rep] Guitar ! gt;

invariant songs == gt.solos;

public void Play()

{

gt.Strum();

songs++;

What was the Error?

public void Client() {
RockBand b = new RockBand();
b.Play();
b.Play();

Error: The call to Guitar.Strum() requires
target object to be peer consistent (owner
must not be valid)

How do we change an object from valid to mutable?

Rosemary.Monahan@NUIM.ieIFM 2010 113

public class RockBand {

int songs;

[Rep] Guitar ! gt;

invariant songs == gt.solos;

public void Play()

{

expose(this)

{ gt.Strum();

songs++;

}

}

Aggregate-Object

public void Client() {

RockBand b = new RockBand();
b.Play();
b.Play();
}

Rosemary.Monahan@NUIM.ieIFM 2010 114

public class RockBand {

int songs;

[Rep] Guitar ! gt;

invariant songs == gt.solos;

public void Play()

{

expose(this)

{ gt.Strum();

songs++;

Ownership Based Invariants

public void Client() {

RockBand b = new RockBand();
b.Play();
b.Play();
}

<Rockband[Rep].ssc>

Note the Ownership based invariant ... This invariant also
requires that gt is a [Rep] object as it dereferences gt.

Rosemary.Monahan@NUIM.ieIFM 2010 115

A Note on Modifies clauses

� In our example when the Guitar gt is annotated
as [Rep], the method Play() does not need to
specify modifies gt*

� This is a private implementation detail so the
client doesn’t need to see it

Subtyping and Inheritance

Inheritance
[Additive] and Additive Expose
Overriding methods – inheriting contracts

Rosemary.Monahan@NUIM.ieIFM 2010 117

Base Class

public class Car

{

protected int speed;

invariant 0 <= speed;

protected Car()

{ speed = 0;

}

public void SetSpeed(int kmph)
requires 0 <= kmph;
ensures speed == kmph;

{
expose (this) {

speed = kmph;
}

}

}

Rosemary.Monahan@NUIM.ieIFM 2010 118

Inheriting Class: Additive Invariants

public class LuxuryCar:Car

{

int cruiseControlSettings;

invariant cruiseControlSettings == -1 || speed == cruiseControlSettings;

LuxuryCar()

{

cruiseControlSettings = -1;

}

}

The speed attribute of the superclass
is mentioned in the
the object invariant

of the subclass

Rosemary.Monahan@NUIM.ieIFM 2010 119

Change required in the Base Class

public class Car{

[Additive] protected int speed;
invariant 0 <= speed;

protected Car()
{ speed = 0;
}

…
The [Additive] annotation is needed

as speed is mentioned in
the object invariant

of LuxuryCar

Rosemary.Monahan@NUIM.ieIFM 2010 120

Additive Expose

[Additive] public void SetSpeed(int kmph)
requires 0<= kmph;
ensures speed == kmph;

{
additive expose (this) {
speed = kmph;

}
}

An additive expose is needed
as the SetSpeed method is

inherited and so must expose
LuxuryCar if called on a

LuxuryCar Object

Rosemary.Monahan@NUIM.ieIFM 2010

Specification Inheritance

Spec# verifies a call to a virtual method M against the

specification of M in the static type of the receiver and

enforces that all overrides of M in subclasses live up to that

specification

An overriding method inherits the precondition, postcondition,

and modifies clause from the methods it overrides.

It may declare additional postconditions, but not additional

preconditions or modifies clauses because a stronger

precondition or a more permissive modifies clause would

come as a surprise to a caller of the superclass method

Rosemary.Monahan@NUIM.ieIFM 2010 122

Virtual Methods
public class Car{

[Additive] protected int speed;
invariant 0 <= speed;

protected Car()
{ speed = 0;
}

[Additive] virtual public void SetSpeed(int kmph)
requires 0 <= kmph;
ensures speed == kmph;

{
additive expose (this) {
speed = kmph;

}
}

}

Rosemary.Monahan@NUIM.ieIFM 2010 123

Overriding Methods
public class LuxuryCar:Car{
protected int cruiseControlSettings;
invariant cruiseControlSettings == -1 || speed == cruiseControlSettings;

…

[Additive] override public void SetSpeed(int kmph)

//requires 0<= kmph is not allowed
ensures cruiseControlSettings == kmph && speed == cruiseControlSettings;
{

additive expose(this){
cruiseControlSettings = kmph;

additive expose((Car)this){
speed =cruiseControlSettings;}

} }
}

Rosemary.Monahan@NUIM.ieIFM 2010 124

Class Frames

Class Frame: refers to a particular class declaration, not its subclasses
or its superclasses. Each frame can declare its own invaraints which
constrain the fields declared in that frame.

[Additive] override public void SetSpeed(int kmph)
ensures cruiseControlSettings == kmph && speed == cruiseControlSettings;

{
additive expose(this){

cruiseControlSettings = kmph;
additive expose((Car)this){
speed =cruiseControlSettings;}

} }
}

Rosemary.Monahan@NUIM.ieIFM 2010 125

Class Frames ctd.

� We refine the notions of mutable and valid to apply
individually to each class frame of an object.

� We say an object is consistent or committed only when all
its class frames are valid. i.e. they apply to the object as a
whole.

� The expose statement changes one class frame of an
object from valid to mutable.

� The class frame to be changed is indicated by the static
type of the (expression denoting the) given object. E.g.
expose (this) and expose ((Car)this).

Peers

Rosemary.Monahan@NUIM.ieIFM 2010

� It is appropriate that one object owns another if the other
is part of the private implementation of the first as with
[Rep] objects.

� Sometimes, one object holds a reference to another for
some other reason ... [Peer]

Example:

A linked-list node n holds a reference to the next node in
the list, n.next. However, n.next is usually not thought of
as an implementation detail or component of n. Rather, n
and n.next have a more equal relationship, and both nodes
may be part of the same enclosing aggregate object.

127

[Peer]

Rosemary.Monahan@NUIM.ieIFM 2010

class Node {

public string key;

public int val;

[Peer] public Node next;

public Node(string key, int val) {

this.key = key;

this.val = val;

}

} <Dictionary.ssc>

128

[Peer] Example

Rosemary.Monahan@NUIM.ieIFM 2010

Rep vs. Peer Guidelines

� Use [Rep] where possible as it strengthens encapsulation
and simplifies verification.

� Use [Rep] when

� the field references an object whose type or mere existence is an
implementation detail of the enclosing class

� Use [Peer] when

� two objects are part of the same aggregate or

� the objects are part of a recursive data structure or

� the field references an object that can also be accessed by clients of
the enclosing class

� e.g. a collection is not an implementation detail of its iterator
and clients of the iterator may also access the collection directly.

<collection.ssc>

Rosemary.Monahan@NUIM.ieIFM 2010 130

Back to Aggregates…

public class Radio {

public int soundBoosterSetting;

invariant 0 <= soundBoosterSetting;

public bool IsOn()

{

int[] a = new int[soundBoosterSetting];

bool on = true;

// ... compute something using "a", setting "on" appropriately

return on;

}

}

Rosemary.Monahan@NUIM.ieIFM 2010 131

Peer

public class Car {

int speed;

invariant 0 <= speed;

[Peer] public Radio! r;

public Car() {

speed = 0;

r = new Radio();

}

public void SetSpeed(int kmph)

requires 0 <= kmph;

modifies this.*, r.*;

{

speed = kmph;

if (r.IsOn()) {

r.soundBoosterSetting =

2 * kmph;

}

}

}
[Peer] there is only one owner- the owner of the car and radio

Rosemary.Monahan@NUIM.ieIFM 2010 132

Rep

public class Car {

int speed;

invariant 0 <= speed;

[Rep] Radio! r;

public Car() {

speed = 0;

r = new Radio();

}

public void SetSpeed(int kmph)

requires 0 <= kmph;

modifies this.*;

{

expose (this) {

speed = kmph;

if (r.IsOn()) {

r.soundBoosterSetting =

2 * kmph;

}

}

}

}

[Rep] there is an owner of car and an owner of radio

Rosemary.Monahan@NUIM.ieIFM 2010

Points to owner

x

y z

Ownership domains

x owns y and z

y and z are components
in the representation of x

y and z are peers

Rosemary.Monahan@NUIM.ieIFM 2010 134

Rep

public class Car {

int speed;

invariant 0 <= speed;

[Rep] Radio! r;

public Car() {

speed = 0;

r = new Radio();

}

public void SetSpeed(int kmph)

requires 0 <= kmph;

modifies this.*;

{

expose (this) {

speed = kmph;

if (r.IsOn()) {

r.soundBoosterSetting =

2 * kmph;

}

}

Making radio [Rep] makes Radio peer valid

Need the expose block to make it peer consistent.

Rosemary.Monahan@NUIM.ieIFM 2010 135

Rep

public class Car {

int speed;

invariant 0 <= speed;

[Rep] Radio! r;

public Car() {

speed = 0;

r = new Radio();

}

public void SetSpeed(int kmph)

requires 0 <= kmph;

modifies this.*;

{

expose (this) {

speed = kmph;

if (r.IsOn()) {

r.soundBoosterSetting =

2 * kmph;

}

}

}

}

Making radio [Rep] makes Radio peer valid

Need the expose block to make it peer consistent.

Why ever use Rep?

We gain Information Hiding, e.g. if we add

an invariant to Car with reference to radio

components we get a warning via a

visibility based error

Rosemary.Monahan@NUIM.ieIFM 2010

Ownership of Array Elements

[ElementsRep] attribute on an array expresses that

every non-null element of the array is owned by the

enclosing object.

Example: <DrawingEngine.ssc>

� With the [ElementsRep] attribute on the array called
steps and expose(this) in the code, steps[i] is peer
consistent.

� DrawingEngine methods are then allowed to modify the
elements of steps[] because they are components of
DrawingEngine

Rosemary.Monahan@NUIM.ieIFM 2010

Ownership of Array Elements

� Spec# also provides an attribute [ElementsPeer],
which expresses that the array elements are peers
of the object containing the [ElementsPeer] field.

Rosemary.Monahan@NUIM.ieIFM 2010

Ownership for Generics

Ownership for generics is very generics, similar to arrays, with

two differences.

� We specify the owner individually for each generic type
argument.

� This is done by passing the number of the type argument to the
attributes [ElementsRep] and [ElementsPeer]

E.g. [ElementsPeer(0)] Dictionary<K,V> dict;

adds implicit checks and assumptions to all operations on dict that
values of type K are peers of this.

� There are no automatic owner assignment when objects
are passed to operations of generic classes.

Rosemary.Monahan@NUIM.ieIFM 2010

Using Collections

public class Car {

[Rep] [ElementsPeer]

List<Part!>! spares =
new List<Part!>();

public void AddPart() {

expose (this) {

Part p = new Part();

Owner.AssignSame(p, Owner.ElementProxy(spares));

spares.Add(p);

}

}

public void UsePart()

modifies this.**;

{

if (spares.Count != 0) {

Part p = spares[0];

p.M();

}

}

}

139

Rosemary.Monahan@NUIM.ieIFM 2010 140

[Rep] locks

public class Car {

int speed;

invariant 0 <= speed;

[Rep] public Radio! r;

invariant r.soundBoosterSetting == 2 * speed;

[Rep] bool[]! locks;

invariant locks.Length == 4;

Rosemary.Monahan@NUIM.ieIFM 2010 141

Capture Rep objects

public Car([Captured] bool[]! initialLocks)

requires initialLocks.Length == 4;

{

speed = 0;

r = new Radio();

locks = initialLocks;

}

We can’t take ownership
of initialLocks as someone
else might own it so we
need to capture it

Rosemary.Monahan@NUIM.ieIFM 2010 142

Modifies clause expanded

public void SetSpeed(int kmph)

requires 0 <= kmph;

modifies this.*, r.*, locks[*];

{

expose (this) {

if (kmph > 0) {

locks[0] = true;

}

speed = kmph;

r.soundBoosterSetting = 2 * kmph;

}

}

}

Rosemary.Monahan@NUIM.ieIFM 2010 143

Peer

public class Car {

int speed;

invariant 0 <= speed;

[Rep] public Radio! r;

invariant r.soundBoosterSetting == 2 * speed;

[Peer] bool[]! locks;

invariant locks.Length == 4;

Rosemary.Monahan@NUIM.ieIFM 2010 144

[Captured] and [Peer]

[Captured]

public Car(bool[]! initialLocks)

requires initialLocks.Length == 4;

ensures Owner.Same(this, initialLocks);

{

speed = 0;

r = new Radio();

Owner.AssignSame(this, initialLocks);

locks = initialLocks;

}

The constructor has the [Captured] attribute,
indicating that the constructor assigns the owner of
the object being constructed.

Set the owner
manually

Rosemary.Monahan@NUIM.ieIFM 2010 145

Manual Loop Invariants
public void SetSpeed(int kmph)

requires 0 <= kmph;
modifies this.*, locks[*];

{ expose (this) {
if (kmph > 0)
{

bool[] prevLocks = locks;
for (int i = 0; i < 4; i++)
invariant locks == prevLocks && locks.Length == 4;
{ locks[i] = true;
}

}
speed = kmph;
r.soundBoosterSetting = 2 * kmph;

}
}

Manual Loop invariant
to satisfy the modifies
clause

Pure Methods

Rosemary.Monahan@NUIM.ieIFM 2010 147

Pure Methods
� If you want to call a method in a specification, then the

method called must be pure
� This means it has no effect on the state of objects allocated

at the time the method is called
� Pure methods must be annotated with [Pure], possibly in

conjunction with:
�

[Pure][Reads(ReadsAttribute.Reads.Everything)] methods may read
anything

�

[Pure][Reads(ReadsAttribute.Reads.Owned)] (same as just [Pure])
methods can only read the state of the receiver object and its
(transitive) representation objects

�

[Pure][Reads(ReadsAttribute.Reads.Nothing)] methods do not read
any mutable part of the heap.

� Property getters are [Pure] by default

Rosemary.Monahan@NUIM.ieIFM 2010 148

Using Pure Methods
� Declare the pure method within the class definition

e.g.

[Pure] public bool Even(int x)

ensures result == (x % 2 == 0);

{

return x % 2 == 0;

}

Rosemary.Monahan@NUIM.ieIFM 2010 149

Using Pure Methods
public int SumEven()

ensures result ==

sum{int i in (0: a.Length), Even(a[i]); a[i]};

{

int s = 0;

for (int n = 0; n < a.Length; n++)

invariant n <= a.Length;

invariant s == sum{int i in (0: n) , Even(a[i]); a[i]};

{ if (Even(a[i]))

s += a[n];

}

return s;

}
Pure method calls

Rosemary.Monahan@NUIM.ieIFM 2010

Boogie 2

An intermediate language designed to accommodate the
encoding of verification conditions for imperative, object-

oriented programs.

Code Examples on
http://ifm2010.loria.fr/satellite.html

See subfolder Part3

Rosemary.Monahan@NUIM.ieIFM 2010

Rosemary.Monahan@NUIM.ieIFM 2010 152

Rosemary.Monahan@NUIM.ieIFM 2010

Boogie File Generation

To create Boogie PL programs use

sscboogie Program.dll /print:Program.bpl

� <MyString.ssc>

� <MyString.bpl>

Rosemary.Monahan@NUIM.ieIFM 2010

Boogie Declarations

Mathematical constructs to define a logical basis for

the terms used in the program:

� type, const, function, and axiom.

Imperative constructs to define the behaviour of the

program:

� var (global variables), procedure (declarations),
and (procedure) implementation.

Rosemary.Monahan@NUIM.ieIFM 2010

Boogie Statements

� x := E

� a[i] := E

� havoc x

� assert E

� assume E

� ;

� call P()

� if

� while

� break

� label:

� goto A, B

Rosemary.Monahan@NUIM.ieIFM 2010

Some Examples

� <Find.bpl>

� <monapoli_sum_max.bpl>

� <monapoli_search.bpl>

� <DutchFlag.bpl>

� <Bubble.bpl>

Rosemary.Monahan@NUIM.ieIFM 2010

Some Research Languages that use
Boogie as an Intermediate Language

Chalice: specification and verification of concurrent

programs using shared memory and mutual

exclusion via locks.

Dafny: an object-based language where specifications are

written in the style of dynamic frames.

Java BML, Eiffel, C (Havoc), C (VCC), Region

Logic, …

VSTTE 2010: Benchmarks in Dafny

Microsoft Code Contracts

Rosemary.Monahan@NUIM.ieIFM 2010 160

Conclusions

The main contributions of the Spec# programming system are:

� a contract extension to the C# language

� a sound programming methodology that permits

specification and reasoning about object invariants even

in the presence of callbacks

� tools that enforce the methodology, ranging from easily

usable dynamic checking to high-assurance automatic

static verification

� inspired other tools such as Dafny, Chalice and Code

Contracts

Rosemary.Monahan@NUIM.ieIFM 2010 161

References and Resources

� Spec# websites http://specsharp.codeplex.com/ and
http://research.microsoft.com/specsharp/

� The Spec# programming system: An overview. Mike Barnett,
K. Rustan M. Leino, and Wolfram Schulte. In CASSIS 2004, LNCS vol.
3362, Springer, 2004.

� Boogie: A Modular Reusable Verifier for Object-Oriented Programs. Mike
Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and
K. Rustan M. Leino. In FMCO 2005, LNCS vol. 4111, Springer, 2006.

� Automatic verification of textbook programs that use comprehensions.
K. Rustan M. Leino and Rosemary Monahan. In Formal Techniques for
Java-like Programs, ECOOP Workshop (FTfJP'07: July 2007, Berlin,
Germany), 2007.

� The Spec# programming system: An overview. In FM 2005 Tutorial given
by Bart Jacobs, K.U.Leuven, Belgium.

Rosemary.Monahan@NUIM.ieIFM 2010 162

Tutorials and Examples

Spec# Tutorial Paper at http://specsharp.codeplex.com/

Using the Spec# Language, Methodology, and Tools to Write
Bug-Free Programs. K. Rustan M. Leino and Peter Müller.

Spec# examples and course notes available by emailing
Rosemary.Monahan@NUIM.ie and at
http://www.cs.nuim.ie/~rosemary/

Further resources and papers at
http://research.microsoft.com/specsharp/

